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The stability of natural convection in fluid between two parallel vertical plates is 
investigated theoretically. The two plates are maintainedat different temperatures 
and a uniform stable temperature gradient /3 is present in the vertical direction. 
The Prandtl number of the fluid is fixed at 7.5. An orthonormalization method is 
used in numerical integrations of the disturbance equations. It is shown how the 
critical Grashof number varies with /3 for both stationary and travelling dis- 
turbances. It is found that for /3 < 7- 1 x 10-3 the convection is unstable to station- 
ary disturbances and for /3 > 7.1 x it  is unstable to travelling disturbances. 
The critical Grashof number is given by 

500 for /3 < 1 . 0 ~  
Gc = 11.3 x 106/33 for /3 > 4-1 x 10-2, 

and even for intermediate values of ,8 the variation of G, is rather simple but not 
monotonic. 

1. Introduction 
In fluid filling the space between two parallel vertical plates, natural convection 

occurs when the plates are maintained at  different temperatures. The convection 
intensifies with increasing temperature difference 2AT* and becomes unstable 
when the difference exceeds some critical value. This paper contains a theoretical 
study of the stability of a temperature and flow field established as a result of 
natural convection. 

In  the limiting case of an infinitely deep fluid, i t  has been established that 
convection is unstable to stationary disturbances if the Prandtl number of the 
fluid is less than 10 (Gershuni 1953; Rudakov 1967; Vest & Arpaci 1969; Gotoh 
& Ikeda 1972). This theoretical result has been confirmed by experiments: 
a stationary disturbance is observed to grow, producing an unstable state of 
convection, in an air layer with an aspect ratio h = H*/2L* = 33.3, where 
H* and L* are respectively the depth and half-width of the fluid layer (Vest & 
Arpaci 1969). 

In  another limiting case, h = 0, the problem is reduced to the stability of 
natural convection along a single vertical plate. A theoretical investigation of this 
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problem was made by Nachtsheim (1963), who found that the convection was 
unstable to travelling disturbances. This prediction, as well as the curve of 
neutral stability, has been confirmed experimentally by Polymeropoulos & 
Gebhart (1967). Convection in a water layer with h = 16.3 has also been found to 
be unstable to travelling disturbances (Oshima 1971). 

A change in the mode of instability can be expected, therefore, a t  some finite 
value of h, h, say. An objective of the present investigation is to confirm the 
existence of h, and to find its value in the case of a water layer. Heat transfer 
across the fluid layer depends sensitively on the mode of fluid motion, so the 
location of h, is of importance in such a problem as 'double glazing ', for example 
(Batchelor 1954). 

It has been found experimentally that the effect of the fluid layer being of 
finite depth appears essentially as a temperature gradient in the vertical direction, 
the magnitude of which is equal to AT*/(2hL*). So, instead of studying the 
stability of the exact laminar flow solution in a fluid layer with finite aspect 
ratio, we examine natural convection driven in a fluid layer between two inJinite 
vertical plates in the presence of a uniform stable temperature gradient /3 in 
the vertical direction throughout the system. The velocity and the temperature 
distributions in this problem give a reasonable fit to observations made near the 
centre-line of a fluid layer with large aspect ratio h (Elder 1965). 

An orthonormalization method is used in numerical integrations of the dis- 
turbance equations. The /3 dependence of the critical Grashof number will be 
found for each of two modes of instability. From this it will be concluded that if 
,8 > 7.1 x the convection is unstable to travelling (two-dimensional) dis- 
turbances and that otherwise it is unstable to stationary (two-dimensional) dis- 
turbances, i.e. pc = 7.1 x This is rewritten as h, = 70.6 using the empirical 
relationp = (2h)-l. 

2. Formulation of the problem 
We consider a fluid layer between two parallel vertical plates at x* = L*, 

where the x* axis of the Cartesian co-ordinates is taken perpendicular to the 
plates and the z* axis vertically upwards. The plate at x* = - L* is maintained 
at a temperature T* = T:+P*x* and the other at T *  = Tg+P*z*, where Tf 
and TZ are constants. If we restrict our interest to the two-dimensional motion 
and the temperature distribution, the fundamental equations may be written, 
under the Boussinesq approximation, as follows : 

where $(x, z ;  t )  is the stream function and T ( x ,  z ; t )  the temperature relative to 
i(T? +!Z'Z). All quantities have been made non-dimensional using L*, AT* 
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[ = &T,* - T?)] and W$ ( =y*g*L*2AT*/v*) as the representative length, tem- 
perature and velocity respectively, and the non-dimensional parameters 

G = w$L*fv*, = v*/K* (2.3) 

are the Grashof number and the Prandtl number respectively. Here y*, Y* and 
K* are the coefficients of volume expansion, kinematic viscosity and thermal 
diffusivity of the fluid and g* is the acceleration due to gravity. 

The boundary conditions are 

$( t- 1, z ;  t)  = constant, 

T(*l ,z ; t )  = +l+/3z .  

If we assume the undisturbed velocity and temperature distributions to be 
$ = Y(x) and T = O(x)  +/3z, the exact solution of (2.1)-(2.5) can be obtained as 
follows: 

W ( x )  = - aY/ax = - (2m2)-lIm [f(x, m)] ,  

@(X) = Re [f@, m)], 

f (x, m) = sinh [( 1 + i) mx]/sinh [( 1 + i) m] 

(2.6) 

(2.7) 

(2.8) 

4m4 = PgG. (2.9) 

W ( x )  = &x(l-x2), O ( x )  = 2. (2.10), (2.11) 

where Re and Im denote respectively real and imaginary parts, 

and the parameter m is defined by 

For m < 1, W ( x )  and O(x)  are reduced to 

In  the limit m -+ 00, the profiles (2.6) and (2.7) of W ( x )  and O(x)  become of 
boundary-layer type. In  the region near x = 1, W ( x )  and O(x)  are expressed in 
terms of a stretched variable E = m( 1 - x) as 

W(c)  = (2m2)-l ef sin 6, O(5) = e-5 cos (. (2.12), (2.13) 

To simplify the analysis, only two-dimensional disturbances are studied in 
this paper even though Squire's theorem does not apply, owing to the presence 
of the basic vertical temperature gradient (p + 0). Since the undisturbed field is 
independent of z, if we decompose the disturbances $(x, z ;  t) and &(x, z ;  t )  into 
harmonic components according to 

(2.14) 

then each component can be treated separately. The real parameter a ( >  0) is 
the wavenumber in the z direction while c, ( = Re (c)) denotes the phase velocity 
and aci ( =  a I m  (c)) the amplification rate of the component. According as ci 
is positive, zero or negative, the disturbance is amplified, neutral or damped out. 
Substituting 

(2.15) 

5-2 

I $ = Y(x) + '(x) exp [ia(z - ct)], 
T = O(x)  +pz + O(x) exp [ia(z - ct ) ]  
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into (2.1) and (2.2) and neglecting products of the harmonics, we have the follow- 
ing equations for $(x) and 6(x) : 

(2.16) 

( W - c) 8 + O'$ = (iaaG)-l(S" - a26 + 4m4$'), (2.17) 

where a prime stands for differentiation with respect to x. The boundary 
conditions are reduced from (2.4) and (2.5) to 

$( & 1) = $'( 4 1) = 6( & 1) = 0. 

( W - C) ($" - a'$) - W"$ = (iaG)-l (eV - 2a2$" + a4$ - 6') ,  

(2.18) 

In  order that (2.16)-(2.18) have non-trivial solutions, an appropriate eigen- 
value equation must be satisfied by c, a, G, m and a. When m is zero or small the 
flow is unstable to stationary disturbances, characterized by c, = 0, and when m 
is larger the flow is unstable to travelling disturbances, with non-zero c,. In  fact 
the eigenvalue problem is divided into two cases: c, = 0 and c, + 0. The eigen- 
value equation for the neutral (ci = 0) stationary disturbances (c, = 0) may be 

(2.19) 
expressed as Gl = F,(a, m, (T). 

The critical value G,, is defined by 

G,,(m, a) = minF,(a, m, v) .  
U 

(2.20) 

In  the same manner the eigenvalue equation for the neutral (ci = 0) travelling 
disturbances can be written as 

(2.21) 

(2.22) 

G2 = F2{a, m, g), c, = &(a, m, c) =I= 0, 

and the critical value G2, is defined by 

G,,(m, (T) = minF2(a,m, a). 
(r 

The critical Grashof number of the system (2.16)-(2.18) is the smaller of G, and 
Gzc. Which of Glc and G2, is smaller depends on the values of m and (T . 

The asymptotic form of G,,(m, (T) (k = 1,2) in the limit m -+co will be found 
as follows. If we make use of new variables 

8(c) = 6(t)/m3: t? = 2m2c, dz = a/m, 6 = G/(2m3), (2.23) 

then the equations governing l?(t) and $(c) are, in the limit m -+ co, 

(F? - t?) ( q a p -  $2) 4 - (a2$/ap) $ = (id?)-, {(a2/ap - dzy 4 - a&q, (2.24) 

( $ - E ) B + ( d 6 / d f ) $  = (i(Td26)-1{(d2/dc2-&2)8+4d$/d~, (2.25) 
h A 

where W = &'sin[, O = 2e-6cos[. 

The boundary conditions for $(c) and $(c) are reduced from (2.18) to 

$ ( O )  = $(a) = d$(O)/d[ = d$(co)/dt = B(0) = 8(co) = 0. (2.26) 

Let us denote by 6 k c ( ~ )  the critical value of i?, which will be determined by solving 
(2.24)-(2.26). Then the asymptotic form of Gkc(m, a) may be expressed as 

Gke(m, v )  = 26,(v) m3 as m --f 00. (2.27) 
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3. Solutions of the eigenvalue problem 

fixed a t  (T = 7-5 ( =  crW, say). 
In  this paper we deal with only the flow of water, and the Prandtl number is 

T h e  m dependence of G J m ,  aw) 

The eigenvalue problem with respect to stationary disturbances has already been 
investigated by the authors and the m dependence of G,,(m, crw) found (Gotoh & 
Mizushima 1973), so only the result is reproduced here, in figure I.  It will be dis- 
cussed in connexion with G,(m, crw) in $4. 

T h e  m dependence of G2,(m, uw) 

The case m = 0 of the problem has been attacked repeatedly and the critical 
value G,( 0, a) is given by 

(Gotoh & Satoh 1966; Gotoh & Ikeda 1971). Rudakov examined the stability 
characteristics of the disturbances a t  lower values of G. He found G,,(O, a) = 500, 
but could not obtain any result revising (3.1). 

The first step in the present investigation is to obtain the branch of G,,(m, vw) 
specified by (3.1). Using conventional asymptotic analysis we found the result 
depicted in figure 1 (for details of the calculation procedure, refer to Gotoh & 
Ikeda 1971). The curve in figure 1 has the asymptote 

G,(o, C) = 3 x 107 (3.1) 

~ , , ( m ,  a,) = 3 x 107m3 (3.2) 

for large values of m, which means that 

d,, = 1.5 x 1 0 7 .  (3.3) 

For m = co, it  has been found by Gill & Davey (1969) that there are two different 
modes of instability to travelling disturbances. They termed one mechanically 
driven instability (MDI) and the other buoyancy-driven instability (BDI). MDI 
and BDI are characterized by the mechanism of the energy supply for the growth 
of disturbances. In  MDI energy is supplied by the velocity field of the undisturbed 
flow, while in BDI it is supplied by the undisturbed temperature field. Unfortu- 
nately, in their paper there is no result for G,, for MDI for cr = crw with which (3.3) 
may be compared. The result (3.3) must, however, correspond to this because no 
direct effect of the temperature field has been included in the asymptotic analysis 
used in the derivation of (3.3).? 

Another asymptote of G2,(m, aw), which is one for BDI, is given by 

~,(m,  aw) = 21m3, (3-4) 

where the numerical coefficient is decided from the result of Gill & Davey. 

t Additional evidence is provided by the eigenvalue of c,. BDI is characterized by a 

magnitude of c, larger than max [W(z)] ,  while the c, corresponding to (3.3) is not more than 

about 16 yo of max [@(z)]. 

h 

5 
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FIGURE 1. The variation in G,,(m, a) and G2,(m, a) with m for a = 7.5. The critical Grashof 
number is given for each m by the lowest curve at that m. According to (2.9), p is fixed on 
straight lines with slope 4. For /? < PE, G, corresponds to stationary disturbances, while for 
/3 > PC, G, corresponds to  travelling disturbances. 

Evidently the GzC(m, crw) in (3.4) is smaller than that in (3.2), so the critical Gras- 
hof number, when m 9 1, is given by the G,,(m, rw) in (3.4). The second task in 
this paper is, therefore, to find Gzc(m, rw) for BDI for h i t e  values of m. Since 
we know no counterpart of G,, for BDI at m = 0,  we have to use (3.4) as the fist 
approximation in this work. Worse still, the curve of neutral stability for BDI 
has no asymptote for aG -+ oo,t so the asymptotic theory established so far is not 
applicable and the only way to solve the problem is by numerical integration 
of the disturbance equations (2.16) and (2.17). 

Using a pair of solutions $(x) and 8(x) of (2.16) and (2.17), a complex-valued 
vector function a(z) is defined as follows: 

a@> = [qw, $'W, $"(.), $"(x), 44, @(z)l. (3.5) 

t This can be deduced from a study of the Rayleigh equation with the basic flow 
W(r) .  details of which are omitted here. 
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Let us denote by ak(x) (k = 1,2 ,3)  the functions a(x) whose values are specified 
at  x = - 1 as follows: 

al(- 1) = LO, 0, 1, 0, 0, 01, 

az(- 1) = LO, 0, 0, 1, 0, 01 
a3( - 1) = [O, 0, 0, 0, 0, I]. 

Then the general solution which satisfies the boundary conditions a t  x = - 1 is 
given by 3 

a(x) = ak(x), (3.7) 
k = l  

where the A’s are constants to be determined so as to satisfy the boundary con- 
ditions at x = I .  For all the A’s not to vanish, the following secular equation must 

which is an eigenvalue equation for a, G, c, and m. 
The elements of the determinant in (3.8) are evaluated by integrating (2.16) 

and (2.17) from x = - 1 to x = I .  For large values of aG the particular solutions 
ak(x), as is well known, lose their mutual independence in the process of the 
numerical integration. Luckily this difficulty may be overcome by making use of 
the technique of orthonormalization of solutions (Betchov & Criminale 1967, 
p. 275). After integration of (2.16) and (2.17) over several steps (to x = xl, say) 
the ak(xl) are made mutually orthogonal, as well as normalized, by replacing 
ak(xl) by bk(xl) (k = 1,2,3) ,  where 

(3-9) I bl(X1) = Nlal(xl), 

bz(x1) = Nz{a,(x1) +Blbl(xl)), 
b3(x,) = %{a&,) +BZbZ(Xl) +B,b,(x1)1. 

Here the N’s are normalization constants and the B’s are coefficients determined 
so as to make 

(3.10) 

where [bj, bk] denotes the inner product of the vectors b, and bk and a bar a 
complex conjugate. Integration is continued from x = x1 with the initial values 
bk(xl) (k = 1,2 ,3) .  The procedure of orthonormalization is repeated many times, 
if necessary, and eventually we have the elements of the determinant in (3.8) in 
orthonormalized form. 

We solve the eigenvalue equation (3.8) by the following procedure. Find first 
a root c, of Re [E(a, C, c,, m)] = 0 for given values of m, G and a, then repeat the 
calculation for different values of a and plot the results on the a, c, plane. Inter- 
polation of the points plotted on the a, c, plane gives a contour rr on which 
Re ( E )  = 0. In  the same manner a contour ri on the a, c, plane on which Im(E) = 0 
is obtained. Then find an intersection of two contours I?, and rs; this gives the 
eigenvalues a and c, for given values of m and G. The eigenvalues a and c, obtained 
for different values of G give a curve of neutral stability on the a, aG plane for a 
fixed value of m. 
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FIGURE 2. Neutral curves for buoyancy-driven instability for different values of m. 
0 ,  critical values listed in table 1. 

rn GO a0 

4.0 3-4 x 108 1.6 
3.5 2.6 x 103 1.4 
3.0 2.4 x 103 1.1 
2.8 3.5 x 103 0.7 

TABLE 1 

2 

1 a, 

0 

c2 

s 
X 

B 
d 

m 

FIGURE 3. Values of m and acGc in the liinit ac -t 0. 
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The curves of neutral stability thus obtained for m = 4.0, 3.5, 3.0 and 2.8 are 
plotted in figure 2. The values of G,,(m, a,) which have been produced from data 
in figure 2 are given in table 1 together with a,, the corresponding value of a, and 
plotted in figure 1. For m = 2-6 no eigenvalue for neutral stability is found in the 
whole range of parameters covered by the numerical calculation. From the result 
in figure 3 it can be conjectured that a, and acGc approach 0 and 2.5 x lO3respec- 
tively as m tends to a certain value between 2.6 and 2.8, m, say, so that G, + 00 

as m -+ m,. This conjecture is consistent with the fact that we have no counter- 
part of G2e(m, am) for BDI a t  m = 0. 

4. Conclusions 

intersect in figure 1. The results presented in figure 1 prove that 

and 

Let us denote by m, the value of m a t  which the curves of G,, and G, for BDI 

m, = 2.7 (4.1) 

) (4.2) 
Glc < 8, for BDI and Gzc for MDI for m < m,, 

G,, for BDI < G,, < G, for MDI for m > m,, 

from which we conclude that the critical Grashof number G, is given by 

for m < m,, 
G,, for BDI for m > m,. 

G, = ( G1c (4.3) 

The undisturbed field is, therefore, unstable to stationary disturbances when 
m < 2.7 and unstable to travelling disturbances when m > 2.7. In  other words, 
the mode of growing disturbance is quite different according as m 2 2-7. 

The condition m 2 m, may be represented in terms of p as 

where 

(4.4) 

(4.5) 

or in terms of h as z ( = (2Pc)-l), (4.6 

so long as the empirical relation /3 = (27h)-l is applicable. For m, = 2.7, 
G,,(mc, am) = 4.0 x lo3 and cw = 7.5, the values of ,8, and h, are given respectively 

p, = 7.1 x h, = 70.6. (4.7) by 

Now the results should be discussed in comparison with those for large values of 
a .  The results for a = 1000 from the paper of Gill & Kirkham (1970) are repro- 
duced in figure 4, and show that the critical Grashof number is given by 

G, for BDI for m < m6, 
for m > ml,, 

where mE is the value of m a t  the intersection of G,, and G,. This result is quite 
different from the present one in figure I or in (4.3), and there must be some inter- 
esting transition as G increases with respect to preference for stationary as 
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FIauRE 4. Variation of Glc(m, a) and Gzc(m, a) with m for a = 1000. 

opposed to travelling disturbances a t  large values of m. However, the result for 
large m of Vest & Arpaci is presumably erroneous, as pointed out by Gill & Kirk- 
ham, because Vest & Arpaci ignored the effect of the vertical temperature gradi- 
ent in the disturbance equations. A future investigation will try to obtain the 
correct dependence of G,, on m when cr B 1, and a conclusive discussion on the 
critical Grashof number must be postponed until the end of the programme. 

If the discussion is restricted to the transition curve for travelling disturbances, 
the present result to be used for comparison is the curve G, in figure 1, which 
consists of Gzc for MDI for m < ma and G,, for BDI for m > ma, where ma is the 
value of m at the intersection of G,, for BDI and G,, for MDI in figure 1. In  
figure 4, on the other hand, G2, is given by G, for BDI for any value of m. So some 
interesting change in the structure of the transition curve G,, for travelling 
disturbances must occur as cr increases. 

The authors wish to express their cordial thanks to Dr N. Ikeda for helpful 
discussions. This work was partially supported by Grant-in-Aid for Co-opera- 
tive Research (A) no. 034018, from the Ministry of Education. 
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